Sequential Modeling by Leveraging Non-Uniform Distribution of Speech Emotion

نویسندگان

چکیده

The expression and perception of human emotions are not uniformly distributed over time. Therefore, tracking local changes emotion within a segment can lead to better models for speech recognition (SER), even when the task is provide sentence-level prediction emotional content. A challenge exploring sentence that most existing corpora only annotations (i.e., one label per sentence). This labeling approach appropriate leveraging dynamic trends sentence. We propose framework splits into fixed number chunks, generating chunk-level patterns. relies on rankers unveil pattern sentence, creating continuous curves. Our trains SER model with xmlns:xlink="http://www.w3.org/1999/xlink">sequence-to-sequence formulation by retrieved proposed method achieves best xmlns:xlink="http://www.w3.org/1999/xlink">concordance correlation coefficient (CCC) performance arousal (0.7120), valence (0.3125), dominance (0.6324) MSP-Podcast corpus. In addition, we validate experiments IEMOCAP MSP-IMPROV databases. further compare curves time-continuous traces. evaluation demonstrates these chunk-label effectively capture displaying time-consistency property similar traces annotated listeners. learns meaningful, complementary, information contributes improvement predictions attributes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

Discovering Sequential Patterns from Non-Uniform Databases

Databases, when used to collect data in the dynamic world, change over time. As a consequence, di erent parts of a database that come into the database at di erent times may contain activities with di erent characteristics. In other words, the data in the database are \non-uniform". This non-uniformity of the database gives rise to the idea of a Divide and Conquer strategy that divides a very l...

متن کامل

PennSeq: accurate isoform-specific gene expression quantification in RNA-Seq by modeling non-uniform read distribution

Correctly estimating isoform-specific gene expression is important for understanding complicated biological mechanisms and for mapping disease susceptibility genes. However, estimating isoform-specific gene expression is challenging because various biases present in RNA-Seq (RNA sequencing) data complicate the analysis, and if not appropriately corrected, can affect isoform expression estimatio...

متن کامل

Leveraging Non-Uniform Resources for Parallel Query Processing

Clusters are now composed of non-uniform nodes with different CPUs, disks or network cards so that customers can adapt the cluster configuration to the changing technologies and to their changing needs. Such modular clusters challenge parallel databases. The load balancing techniques used by existing parallel databases partition data across a set of nodes that all run the same relational operat...

متن کامل

Record Range of Uniform Distribution

We consider a sequence of independent and identicaly distributed (iid) random variables with absolutely continuous distribution function F(x) and probability density function (pdf) f(x). Let Rnl be the largest observation after observing nth record and R(ns) be the smallest observation after observing the nth record. Then we say Wnr = Rnl− R(ns), n > 1, as the nth record range. We will c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE/ACM transactions on audio, speech, and language processing

سال: 2023

ISSN: ['2329-9304', '2329-9290']

DOI: https://doi.org/10.1109/taslp.2023.3244527